- Jun 24, 2016
-
-
Rasmus Villemoes authored
When I replaced kasprintf("%pf") with a direct call to sprint_symbol_no_offset I must have broken the initcall blacklisting feature on the arches where dereference_function_descriptor() is non-trivial. Fixes: c8cdd2be (init/main.c: simplify initcall_blacklisted()) Link: http://lkml.kernel.org/r/1466027283-4065-1-git-send-email-linux@rasmusvillemoes.dk Signed-off-by:
Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Yang Shi <yang.shi@linaro.org> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Petr Mladek <pmladek@suse.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Linus Torvalds authored
We've had the thread info allocated together with the thread stack for most architectures for a long time (since the thread_info was split off from the task struct), but that is about to change. But the patches that move the thread info to be off-stack (and a part of the task struct instead) made it clear how confused the allocator and freeing functions are. Because the common case was that we share an allocation with the thread stack and the thread_info, the two pointers were identical. That identity then meant that we would have things like ti = alloc_thread_info_node(tsk, node); ... tsk->stack = ti; which certainly _worked_ (since stack and thread_info have the same value), but is rather confusing: why are we assigning a thread_info to the stack? And if we move the thread_info away, the "confusing" code just gets to be entirely bogus. So remove all this confusion, and make it clear that we are doing the stack allocation by renaming and clarifying the function names to be about the stack. The fact that the thread_info then shares the allocation is an implementation detail, and not really about the allocation itself. This is a pure renaming and type fix: we pass in the same pointer, it's just that we clarify what the pointer means. The ia64 code that actually only has one single allocation (for all of task_struct, thread_info and kernel thread stack) now looks a bit odd, but since "tsk->stack" is actually not even used there, that oddity doesn't matter. It would be a separate thing to clean that up, I intentionally left the ia64 changes as a pure brute-force renaming and type change. Acked-by:
Andy Lutomirski <luto@amacapital.net> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- May 27, 2016
-
-
Yang Shi authored
page_ext_init() checks suitable pages with pfn_to_nid(), but pfn_to_nid() depends on memmap which will not be setup fully until page_alloc_init_late() is done. Use early_pfn_to_nid() instead of pfn_to_nid() so that page extension could be still used early even though CONFIG_ DEFERRED_STRUCT_PAGE_INIT is enabled and catch early page allocation call sites. Suggested by Joonsoo Kim [1], this fix basically undoes the change introduced by commit b8f1a75d ("mm: call page_ext_init() after all struct pages are initialized") and fixes the same problem with a better approach. [1] http://lkml.kernel.org/r/CAAmzW4OUmyPwQjvd7QUfc6W1Aic__TyAuH80MLRZNMxKy0-wPQ@mail.gmail.com Link: http://lkml.kernel.org/r/1464198689-23458-1-git-send-email-yang.shi@linaro.org Signed-off-by:
Yang Shi <yang.shi@linaro.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- May 20, 2016
-
-
Rasmus Villemoes authored
Using kasprintf to get the function name makes us look up the name twice, along with all the vsnprintf overhead of parsing the format string etc. It also means there is an allocation failure case to deal with. Since symbol_string in vsprintf.c would anyway allocate an array of size KSYM_SYMBOL_LEN on the stack, that might as well be done up here. Moreover, since this is a debug feature and the blacklisted_initcalls list is usually empty, we might as well test that and thus avoid looking up the symbol name even once in the common case. Signed-off-by:
Rasmus Villemoes <linux@rasmusvillemoes.dk> Acked-by:
Rusty Russell <rusty@rustcorp.com.au> Acked-by:
Prarit Bhargava <prarit@redhat.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Petr Mladek authored
Testing has shown that the backtrace sometimes does not fit into the 4kB temporary buffer that is used in NMI context. The warnings are gone when I double the temporary buffer size. This patch doubles the buffer size and makes it configurable. Note that this problem existed even in the x86-specific implementation that was added by the commit a9edc880 ("x86/nmi: Perform a safe NMI stack trace on all CPUs"). Nobody noticed it because it did not print any warnings. Signed-off-by:
Petr Mladek <pmladek@suse.com> Cc: Jan Kara <jack@suse.cz> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Russell King <rmk+kernel@arm.linux.org.uk> Cc: Daniel Thompson <daniel.thompson@linaro.org> Cc: Jiri Kosina <jkosina@suse.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: David Miller <davem@davemloft.net> Cc: Daniel Thompson <daniel.thompson@linaro.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Petr Mladek authored
printk() takes some locks and could not be used a safe way in NMI context. The chance of a deadlock is real especially when printing stacks from all CPUs. This particular problem has been addressed on x86 by the commit a9edc880 ("x86/nmi: Perform a safe NMI stack trace on all CPUs"). The patchset brings two big advantages. First, it makes the NMI backtraces safe on all architectures for free. Second, it makes all NMI messages almost safe on all architectures (the temporary buffer is limited. We still should keep the number of messages in NMI context at minimum). Note that there already are several messages printed in NMI context: WARN_ON(in_nmi()), BUG_ON(in_nmi()), anything being printed out from MCE handlers. These are not easy to avoid. This patch reuses most of the code and makes it generic. It is useful for all messages and architectures that support NMI. The alternative printk_func is set when entering and is reseted when leaving NMI...
-
Yang Shi authored
When DEFERRED_STRUCT_PAGE_INIT is enabled, just a subset of memmap at boot are initialized, then the rest are initialized in parallel by starting one-off "pgdatinitX" kernel thread for each node X. If page_ext_init is called before it, some pages will not have valid extension, this may lead the below kernel oops when booting up kernel: BUG: unable to handle kernel NULL pointer dereference at (null) IP: [<ffffffff8118d982>] free_pcppages_bulk+0x2d2/0x8d0 PGD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: CPU: 11 PID: 106 Comm: pgdatinit1 Not tainted 4.6.0-rc5-next-20160427 #26 Hardware name: Intel Corporation S5520HC/S5520HC, BIOS S5500.86B.01.10.0025.030220091519 03/02/2009 task: ffff88017c080040 ti: ffff88017c084000 task.ti: ffff88017c084000 RIP: 0010:[<ffffffff8118d982>] [<ffffffff8118d982>] free_pcppages_bulk+0x2d2/0x8d0 RSP: 0000:ffff88017c087c48 EFLAGS: 00010046 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000001 RDX: 0000000000000980 RSI: 0000000000000080 RDI: 0000000000660401 RBP: ffff88017c087cd0 R08: 0000000000000401 R09: 0000000000000009 R10: ffff88017c080040 R11: 000000000000000a R12: 0000000000000400 R13: ffffea0019810000 R14: ffffea0019810040 R15: ffff88066cfe6080 FS: 0000000000000000(0000) GS:ffff88066cd40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000002406000 CR4: 00000000000006e0 Call Trace: free_hot_cold_page+0x192/0x1d0 __free_pages+0x5c/0x90 __free_pages_boot_core+0x11a/0x14e deferred_free_range+0x50/0x62 deferred_init_memmap+0x220/0x3c3 kthread+0xf8/0x110 ret_from_fork+0x22/0x40 Code: 49 89 d4 48 c1 e0 06 49 01 c5 e9 de fe ff ff 4c 89 f7 44 89 4d b8 4c 89 45 c0 44 89 5d c8 48 89 4d d0 e8 62 c7 07 00 48 8b 4d d0 <48> 8b 00 44 8b 5d c8 4c 8b 45 c0 44 8b 4d b8 a8 02 0f 84 05 ff RIP [<ffffffff8118d982>] free_pcppages_bulk+0x2d2/0x8d0 RSP <ffff88017c087c48> CR2: 0000000000000000 Move page_ext_init() after page_alloc_init_late() to make sure page extension is setup for all pages. Link: http://lkml.kernel.org/r/1463696006-31360-1-git-send-email-yang.shi@linaro.org Signed-off-by:
Yang Shi <yang.shi@linaro.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- May 19, 2016
-
-
Thomas Garnier authored
Provides an optional config (CONFIG_SLAB_FREELIST_RANDOM) to randomize the SLAB freelist. The list is randomized during initialization of a new set of pages. The order on different freelist sizes is pre-computed at boot for performance. Each kmem_cache has its own randomized freelist. Before pre-computed lists are available freelists are generated dynamically. This security feature reduces the predictability of the kernel SLAB allocator against heap overflows rendering attacks much less stable. For example this attack against SLUB (also applicable against SLAB) would be affected: https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/ Also, since v4.6 the freelist was moved at the end of the SLAB. It means a controllable heap is opened to new attacks not yet publicly discussed. A kernel heap overflow can be transformed to multiple use-after-free. This feature makes this type of attack harder too. To generate entropy, we use get_random_bytes_arch because 0 bits of entropy is available in the boot stage. In the worse case this function will fallback to the get_random_bytes sub API. We also generate a shift random number to shift pre-computed freelist for each new set of pages. The config option name is not specific to the SLAB as this approach will be extended to other allocators like SLUB. Performance results highlighted no major changes: Hackbench (running 90 10 times): Before average: 0.0698 After average: 0.0663 (-5.01%) slab_test 1 run on boot. Difference only seen on the 2048 size test being the worse case scenario covered by freelist randomization. New slab pages are constantly being created on the 10000 allocations. Variance should be mainly due to getting new pages every few allocations. Before: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 99 cycles kfree -> 112 cycles 10000 times kmalloc(16) -> 109 cycles kfree -> 140 cycles 10000 times kmalloc(32) -> 129 cycles kfree -> 137 cycles 10000 times kmalloc(64) -> 141 cycles kfree -> 141 cycles 10000 times kmalloc(128) -> 152 cycles kfree -> 148 cycles 10000 times kmalloc(256) -> 195 cycles kfree -> 167 cycles 10000 times kmalloc(512) -> 257 cycles kfree -> 199 cycles 10000 times kmalloc(1024) -> 393 cycles kfree -> 251 cycles 10000 times kmalloc(2048) -> 649 cycles kfree -> 228 cycles 10000 times kmalloc(4096) -> 806 cycles kfree -> 370 cycles 10000 times kmalloc(8192) -> 814 cycles kfree -> 411 cycles 10000 times kmalloc(16384) -> 892 cycles kfree -> 455 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 121 cycles 10000 times kmalloc(16)/kfree -> 121 cycles 10000 times kmalloc(32)/kfree -> 121 cycles 10000 times kmalloc(64)/kfree -> 121 cycles 10000 times kmalloc(128)/kfree -> 121 cycles 10000 times kmalloc(256)/kfree -> 119 cycles 10000 times kmalloc(512)/kfree -> 119 cycles 10000 times kmalloc(1024)/kfree -> 119 cycles 10000 times kmalloc(2048)/kfree -> 119 cycles 10000 times kmalloc(4096)/kfree -> 121 cycles 10000 times kmalloc(8192)/kfree -> 119 cycles 10000 times kmalloc(16384)/kfree -> 119 cycles After: Single thread testing ===================== 1. Kmalloc: Repeatedly allocate then free test 10000 times kmalloc(8) -> 130 cycles kfree -> 86 cycles 10000 times kmalloc(16) -> 118 cycles kfree -> 86 cycles 10000 times kmalloc(32) -> 121 cycles kfree -> 85 cycles 10000 times kmalloc(64) -> 176 cycles kfree -> 102 cycles 10000 times kmalloc(128) -> 178 cycles kfree -> 100 cycles 10000 times kmalloc(256) -> 205 cycles kfree -> 109 cycles 10000 times kmalloc(512) -> 262 cycles kfree -> 136 cycles 10000 times kmalloc(1024) -> 342 cycles kfree -> 157 cycles 10000 times kmalloc(2048) -> 701 cycles kfree -> 238 cycles 10000 times kmalloc(4096) -> 803 cycles kfree -> 364 cycles 10000 times kmalloc(8192) -> 835 cycles kfree -> 404 cycles 10000 times kmalloc(16384) -> 896 cycles kfree -> 441 cycles 2. Kmalloc: alloc/free test 10000 times kmalloc(8)/kfree -> 121 cycles 10000 times kmalloc(16)/kfree -> 121 cycles 10000 times kmalloc(32)/kfree -> 123 cycles 10000 times kmalloc(64)/kfree -> 142 cycles 10000 times kmalloc(128)/kfree -> 121 cycles 10000 times kmalloc(256)/kfree -> 119 cycles 10000 times kmalloc(512)/kfree -> 119 cycles 10000 times kmalloc(1024)/kfree -> 119 cycles 10000 times kmalloc(2048)/kfree -> 119 cycles 10000 times kmalloc(4096)/kfree -> 119 cycles 10000 times kmalloc(8192)/kfree -> 119 cycles 10000 times kmalloc(16384)/kfree -> 119 cycles [akpm@linux-foundation.org: propagate gfp_t into cache_random_seq_create()] Signed-off-by:
Thomas Garnier <thgarnie@google.com> Acked-by:
Christoph Lameter <cl@linux.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: David Rientjes <rientjes@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Greg Thelen <gthelen@google.com> Cc: Laura Abbott <labbott@fedoraproject.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- May 10, 2016
-
-
Arnd Bergmann authored
CC_OPTIMIZE_FOR_SIZE disables the often useful -Wmaybe-unused warning, because that causes a ridiculous amount of false positives when combined with -Os. This means a lot of warnings don't show up in testing by the developers that should see them with an 'allmodconfig' kernel that has CC_OPTIMIZE_FOR_SIZE enabled, but only later in randconfig builds that don't. This changes the Kconfig logic around CC_OPTIMIZE_FOR_SIZE to make it a 'choice' statement defaulting to CC_OPTIMIZE_FOR_PERFORMANCE that gets added for this purpose. The allmodconfig and allyesconfig kernels now default to -O2 with the maybe-unused warning enabled. Signed-off-by:
Arnd Bergmann <arnd@arndb.de> Signed-off-by:
Michal Marek <mmarek@suse.com>
-
- Apr 01, 2016
-
-
Andi Kleen authored
Newer Fedora and OpenSUSE didn't boot with my standard configuration. It took me some time to figure out why, in fact I had to write a script to try different config options systematically. The problem is that something (systemd) in dracut depends on CONFIG_FHANDLE, which adds open by file handle syscalls. While it is set in defconfigs it is very easy to miss when updating older configs because it is not default y. Make it default y and also depend on EXPERT, as dracut use is likely widespread. Signed-off-by:
Andi Kleen <ak@linux.intel.com> Cc: Richard Weinberger <richard.weinberger@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- Mar 29, 2016
-
-
Nicolas Pitre authored
The config option to enable it all. Signed-off-by:
Nicolas Pitre <nico@linaro.org> Acked-by:
Rusty Russell <rusty@rustcorp.com.au>
-
- Mar 15, 2016
-
-
Ard Biesheuvel authored
Similar to how relative extables are implemented, it is possible to emit the kallsyms table in such a way that it contains offsets relative to some anchor point in the kernel image rather than absolute addresses. On 64-bit architectures, it cuts the size of the kallsyms address table in half, since offsets between kernel symbols can typically be expressed in 32 bits. This saves several hundreds of kilobytes of permanent .rodata on average. In addition, the kallsyms address table is no longer subject to dynamic relocation when CONFIG_RELOCATABLE is in effect, so the relocation work done after decompression now doesn't have to do relocation updates for all these values. This saves up to 24 bytes (i.e., the size of a ELF64 RELA relocation table entry) per value, which easily adds up to a couple of megabytes of uncompressed __init data on ppc64 or arm64. Even if these relocation entries typically compress well, the combined size reduction of 2.8 MB uncompressed for a ppc64_defconfig build (of which 2.4 MB is __init data) results in a ~500 KB space saving in the compressed image. Since it is useful for some architectures (like x86) to retain the ability to emit absolute values as well, this patch also adds support for capturing both absolute and relative values when KALLSYMS_ABSOLUTE_PERCPU is in effect, by emitting absolute per-cpu addresses as positive 32-bit values, and addresses relative to the lowest encountered relative symbol as negative values, which are subtracted from the runtime address of this base symbol to produce the actual address. Support for the above is enabled by default for all architectures except IA-64 and Tile-GX, whose symbols are too far apart to capture in this manner. Signed-off-by:
Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by:
Guenter Roeck <linux@roeck-us.net> Reviewed-by:
Kees Cook <keescook@chromium.org> Tested-by:
Kees Cook <keescook@chromium.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Ard Biesheuvel authored
scripts/kallsyms.c has a special --absolute-percpu command line option which deals with the zero based per cpu offsets that are used when building for SMP on x86_64. This means that the option should only be passed in that case, so add a Kconfig symbol with the correct predicate, and use that instead. Signed-off-by:
Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by:
Guenter Roeck <linux@roeck-us.net> Reviewed-by:
Kees Cook <keescook@chromium.org> Tested-by:
Kees Cook <keescook@chromium.org> Acked-by:
Rusty Russell <rusty@rustcorp.com.au> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Ingo Molnar <mingo@kernel.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michal Marek <mmarek@suse.cz> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Geliang Tang authored
Use list_for_each_entry() instead of list_for_each() to simplify the code. Signed-off-by:
Geliang Tang <geliangtang@163.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- Mar 05, 2016
-
-
Parav Pandit authored
Trivial correction in menuconfig help to reflect PIDs as controller instead of subsystem to align to rest of the text and documentation. Signed-off-by:
Parav Pandit <pandit.parav@gmail.com> Signed-off-by:
Tejun Heo <tj@kernel.org>
-
- Mar 03, 2016
-
-
David Howells authored
Move the RSA EMSA-PKCS1-v1_5 encoding from the asymmetric-key public_key subtype to the rsa crypto module's pkcs1pad template. This means that the public_key subtype no longer has any dependencies on public key type. To make this work, the following changes have been made: (1) The rsa pkcs1pad template is now used for RSA keys. This strips off the padding and returns just the message hash. (2) In a previous patch, the pkcs1pad template gained an optional second parameter that, if given, specifies the hash used. We now give this, and pkcs1pad checks the encoded message E(M) for the EMSA-PKCS1-v1_5 encoding and verifies that the correct digest OID is present. (3) The crypto driver in crypto/asymmetric_keys/rsa.c is now reduced to something that doesn't care about what the encryption actually does and and has been merged into public_key.c. (4) CONFIG_PUBLIC_KEY_ALGO_RSA is gone. Module signing must set CONFIG_CRYPTO_RSA=y instead. Thoughts: (*) Should the encoding style (eg. raw, EMSA-PKCS1-v1_5) also be passed to the padding template? Should there be multiple padding templates registered that share most of the code? Signed-off-by:
David Howells <dhowells@redhat.com> Signed-off-by:
Tadeusz Struk <tadeusz.struk@intel.com> Acked-by:
Herbert Xu <herbert@gondor.apana.org.au>
-
- Mar 01, 2016
-
-
Thomas Gleixner authored
Handle the smpboot threads in the state machine. Signed-off-by:
Thomas Gleixner <tglx@linutronix.de> Cc: linux-arch@vger.kernel.org Cc: Rik van Riel <riel@redhat.com> Cc: Rafael Wysocki <rafael.j.wysocki@intel.com> Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Link: http://lkml.kernel.org/r/20160226182341.295777684@linutronix.de Signed-off-by:
Thomas Gleixner <tglx@linutronix.de>
-
Thomas Gleixner authored
Move the split out steps into a callback array and let the cpu_up/down code iterate through the array functions. For now most of the callbacks are asymmetric to resemble the current hotplug maze. Signed-off-by:
Thomas Gleixner <tglx@linutronix.de> Cc: linux-arch@vger.kernel.org Cc: Rik van Riel <riel@redhat.com> Cc: Rafael Wysocki <rafael.j.wysocki@intel.com> Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Sebastian Siewior <bigeasy@linutronix.de> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul Turner <pjt@google.com> Link: http://lkml.kernel.org/r/20160226182340.671816690@linutronix.de Signed-off-by:
Thomas Gleixner <tglx@linutronix.de>
-
- Feb 22, 2016
-
-
Kees Cook authored
It may be useful to debug writes to the readonly sections of memory, so provide a cmdline "rodata=off" to allow for this. This can be expanded in the future to support "log" and "write" modes, but that will need to be architecture-specific. This also makes KDB software breakpoints more usable, as read-only mappings can now be disabled on any kernel. Suggested-by:
H. Peter Anvin <hpa@zytor.com> Signed-off-by:
Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: David Brown <david.brown@linaro.org> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Emese Revfy <re.emese@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mathias Krause <minipli@googlemail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: PaX Team <pageexec@freemail.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: T...
-
- Feb 09, 2016
-
-
Andrey Ryabinin authored
Lockdep is initialized at compile time now. Get rid of lockdep_init(). Signed-off-by:
Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Krinkin <krinkin.m.u@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Cc: mm-commits@vger.kernel.org Signed-off-by:
Ingo Molnar <mingo@kernel.org>
-
- Jan 20, 2016
-
-
Johannes Weiner authored
What CONFIG_INET and CONFIG_LEGACY_KMEM guard inside the memory controller code is insignificant, having these conditionals is not worth the complication and fragility that comes with them. [akpm@linux-foundation.org: rework mem_cgroup_css_free() statement ordering] Signed-off-by:
Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Acked-by:
Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Johannes Weiner authored
Let the user know that CONFIG_MEMCG_KMEM does not apply to the cgroup2 interface. This also makes legacy-only code sections stand out better. [arnd@arndb.de: mm: memcontrol: only manage socket pressure for CONFIG_INET] Signed-off-by:
Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Tejun Heo <tj@kernel.org> Acked-by:
Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by:
Arnd Bergmann <arnd@arndb.de> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Yaowei Bai authored
Make initrd_load() return bool due to this particular function only using either one or zero as its return value. No functional change. Signed-off-by:
Yaowei Bai <baiyaowei@cmss.chinamobile.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Yaowei Bai authored
Make obsolete_checksetup() return bool due to this particular function only using either one or zero as its return value. No functional change. Signed-off-by:
Yaowei Bai <baiyaowei@cmss.chinamobile.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- Jan 16, 2016
-
-
Riku Voipio authored
uselib hasn't been used since libc5; glibc does not use it. Deprecate uselib a bit more, by making the default y only if libc5 was widely used on the plaform. This makes arm64 kernel built with defconfig slightly smaller bloat-o-meter: add/remove: 0/3 grow/shrink: 0/2 up/down: 0/-1390 (-1390) function old new delta kernel_config_data 18164 18162 -2 uselib_flags 20 - -20 padzero 216 192 -24 sys_uselib 380 - -380 load_elf_library 964 - -964 Signed-off-by:
Riku Voipio <riku.voipio@linaro.org> Reviewed-by:
Josh Triplett <josh@joshtriplett.org> Acked-by:
Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- Jan 13, 2016
-
-
Paul Moore authored
To the best of our knowledge, everyone who enables audit at compile time also enables syscall auditing; this patch simplifies the Kconfig menus by removing the option to disable syscall auditing when audit is selected and the target arch supports it. Signed-off-by:
Paul Moore <pmoore@redhat.com>
-
- Dec 26, 2015
-
-
Robert Elliott authored
The brd driver has never supported the ramdisk_blocksize kernel parameter that was in the rd driver it replaced, so remove mention of this parameter from comments and Documentation. Commit 9db5579b ("rewrite rd") replaced rd with brd, keeping a brd_blocksize variable in struct brd_device but never using it. Commit a2cba291 ("brd: get rid of unused members from struct brd_device") removed the unused variable. Commit f5abc8e7 ("Documentation/blockdev/ramdisk.txt: updates") removed mentions of ramdisk_blocksize from that file. Signed-off-by:
Robert Elliott <elliott@hpe.com> Signed-off-by:
Jonathan Corbet <corbet@lwn.net>
-
- Dec 18, 2015
-
-
Johannes Weiner authored
To make it easier to quickly find what's needed list the basic resource controllers of cgroup2 first - io, memory, cpu - while pushing the more exotic and/or legacy controllers to the bottom. tj: Removed spurious "&& CGROUPS" from CGROUP_PERF as suggested by Li. Signed-off-by:
Johannes Weiner <hannes@cmpxchg.org> Acked-by:
Zefan Li <lizefan@huawei.com> Signed-off-by:
Tejun Heo <tj@kernel.org>
-
Johannes Weiner authored
The config options for the different cgroup controllers use various terms: resource controller, cgroup subsystem, etc. Simplify this to "controller", which is clear enough in the cgroup context. Signed-off-by:
Johannes Weiner <hannes@cmpxchg.org> Signed-off-by:
Tejun Heo <tj@kernel.org>
-
- Dec 12, 2015
-
-
Chris Wilson authored
Currently the full stop_machine() routine is only enabled on SMP if module unloading is enabled, or if the CPUs are hotpluggable. This leads to configurations where stop_machine() is broken as it will then only run the callback on the local CPU with irqs disabled, and not stop the other CPUs or run the callback on them. For example, this breaks MTRR setup on x86 in certain configs since ea8596bb ("kprobes/x86: Remove unused text_poke_smp() and text_poke_smp_batch() functions") as the MTRR is only established on the boot CPU. This patch removes the Kconfig option for STOP_MACHINE and uses the SMP and HOTPLUG_CPU config options to compile the correct stop_machine() for the architecture, removing the false dependency on MODULE_UNLOAD in the process. Link: https://lkml.org/lkml/2014/10/8/124 References: https://bugs.freedesktop.org/show_bug.cgi?id=84794 Signed-off-by:
Chris Wilson <chris@chris-wilson.co.uk> Acked-by:
Ingo Molnar <mingo@kernel.org> Cc...
-
- Dec 04, 2015
-
-
Paul E. McKenney authored
This commit adds the invocation of rcu_end_inkernel_boot() just before init is invoked. This allows the CONFIG_RCU_EXPEDITE_BOOT Kconfig option to do something useful and prepares for the upcoming rcupdate.rcu_normal_after_boot kernel parameter. Signed-off-by:
Paul E. McKenney <paulmck@linux.vnet.ibm.com>
-
- Sep 11, 2015
-
-
Mathieu Desnoyers authored
Here is an implementation of a new system call, sys_membarrier(), which executes a memory barrier on all threads running on the system. It is implemented by calling synchronize_sched(). It can be used to distribute the cost of user-space memory barriers asymmetrically by transforming pairs of memory barriers into pairs consisting of sys_membarrier() and a compiler barrier. For synchronization primitives that distinguish between read-side and write-side (e.g. userspace RCU [1], rwlocks), the read-side can be accelerated significantly by moving the bulk of the memory barrier overhead to the write-side. The existing applications of which I am aware that would be improved by this system call are as follows: * Through Userspace RCU library (http://urcu.so) - DNS server (Knot DNS) https://www.knot-dns.cz/ - Network sniffer (http://netsniff-ng.org/) - Distributed object storage (https://sheepdog.github.io/sheepdog/) - User-space tracing (http://lttng.org) - Network storage system (https://www.gluster.org/) - Virtual routers (https://events.linuxfoundation.org/sites/events/files/slides/DPDK_RCU_0MQ.pdf) - Financial software (https://lkml.org/lkml/2015/3/23/189) Those projects use RCU in userspace to increase read-side speed and scalability compared to locking. Especially in the case of RCU used by libraries, sys_membarrier can speed up the read-side by moving the bulk of the memory barrier cost to synchronize_rcu(). * Direct users of sys_membarrier - core dotnet garbage collector (https://github.com/dotnet/coreclr/issues/198) Microsoft core dotnet GC developers are planning to use the mprotect() side-effect of issuing memory barriers through IPIs as a way to implement Windows FlushProcessWriteBuffers() on Linux. They are referring to sys_membarrier in their github thread, specifically stating that sys_membarrier() is what they are looking for. To explain the benefit of this scheme, let's introduce two example threads: Thread A (non-frequent, e.g. executing liburcu synchronize_rcu()) Thread B (frequent, e.g. executing liburcu rcu_read_lock()/rcu_read_unlock()) In a scheme where all smp_mb() in thread A are ordering memory accesses with respect to smp_mb() present in Thread B, we can change each smp_mb() within Thread A into calls to sys_membarrier() and each smp_mb() within Thread B into compiler barriers "barrier()". Before the change, we had, for each smp_mb() pairs: Thread A Thread B previous mem accesses previous mem accesses smp_mb() smp_mb() following mem accesses following mem accesses After the change, these pairs become: Thread A Thread B prev mem accesses prev mem accesses sys_membarrier() barrier() follow mem accesses follow mem accesses As we can see, there are two possible scenarios: either Thread B memory accesses do not happen concurrently with Thread A accesses (1), or they do (2). 1) Non-concurrent Thread A vs Thread B accesses: Thread A Thread B prev mem accesses sys_membarrier() follow mem accesses prev mem accesses barrier() follow mem accesses In this case, thread B accesses will be weakly ordered. This is OK, because at that point, thread A is not particularly interested in ordering them with respect to its own accesses. 2) Concurrent Thread A vs Thread B accesses Thread A Thread B prev mem accesses prev mem accesses sys_membarrier() barrier() follow mem accesses follow mem accesses In this case, thread B accesses, which are ensured to be in program order thanks to the compiler barrier, will be "upgraded" to full smp_mb() by synchronize_sched(). * Benchmarks On Intel Xeon E5405 (8 cores) (one thread is calling sys_membarrier, the other 7 threads are busy looping) 1000 non-expedited sys_membarrier calls in 33s =3D 33 milliseconds/call. * User-space user of this system call: Userspace RCU library Both the signal-based and the sys_membarrier userspace RCU schemes permit us to remove the memory barrier from the userspace RCU rcu_read_lock() and rcu_read_unlock() primitives, thus significantly accelerating them. These memory barriers are replaced by compiler barriers on the read-side, and all matching memory barriers on the write-side are turned into an invocation of a memory barrier on all active threads in the process. By letting the kernel perform this synchronization rather than dumbly sending a signal to every process threads (as we currently do), we diminish the number of unnecessary wake ups and only issue the memory barriers on active threads. Non-running threads do not need to execute such barrier anyway, because these are implied by the scheduler context switches. Results in liburcu: Operations in 10s, 6 readers, 2 writers: memory barriers in reader: 1701557485 reads, 2202847 writes signal-based scheme: 9830061167 reads, 6700 writes sys_membarrier: 9952759104 reads, 425 writes sys_membarrier (dyn. check): 7970328887 reads, 425 writes The dynamic sys_membarrier availability check adds some overhead to the read-side compared to the signal-based scheme, but besides that, sys_membarrier slightly outperforms the signal-based scheme. However, this non-expedited sys_membarrier implementation has a much slower grace period than signal and memory barrier schemes. Besides diminishing the number of wake-ups, one major advantage of the membarrier system call over the signal-based scheme is that it does not need to reserve a signal. This plays much more nicely with libraries, and with processes injected into for tracing purposes, for which we cannot expect that signals will be unused by the application. An expedited version of this system call can be added later on to speed up the grace period. Its implementation will likely depend on reading the cpu_curr()->mm without holding each CPU's rq lock. This patch adds the system call to x86 and to asm-generic. [1] http://urcu.so membarrier(2) man page: MEMBARRIER(2) Linux Programmer's Manual MEMBARRIER(2) NAME membarrier - issue memory barriers on a set of threads SYNOPSIS #include <linux/membarrier.h> int membarrier(int cmd, int flags); DESCRIPTION The cmd argument is one of the following: MEMBARRIER_CMD_QUERY Query the set of supported commands. It returns a bitmask of supported commands. MEMBARRIER_CMD_SHARED Execute a memory barrier on all threads running on the system. Upon return from system call, the caller thread is ensured that all running threads have passed through a state where all memory accesses to user-space addresses match program order between entry to and return from the system call (non-running threads are de facto in such a state). This covers threads from all pro=E2=80=90 cesses running on the system. This command returns 0. The flags argument needs to be 0. For future extensions. All memory accesses performed in program order from each targeted thread is guaranteed to be ordered with respect to sys_membarrier(). If we use the semantic "barrier()" to represent a compiler barrier forcing memory accesses to be performed in program order across the barrier, and smp_mb() to represent explicit memory barriers forcing full memory ordering across the barrier, we have the following ordering table for each pair of barrier(), sys_membarrier() and smp_mb(): The pair ordering is detailed as (O: ordered, X: not ordered): barrier() smp_mb() sys_membarrier() barrier() X X O smp_mb() X O O sys_membarrier() O O O RETURN VALUE On success, these system calls return zero. On error, -1 is returned, and errno is set appropriately. For a given command, with flags argument set to 0, this system call is guaranteed to always return the same value until reboot. ERRORS ENOSYS System call is not implemented. EINVAL Invalid arguments. Linux 2015-04-15 MEMBARRIER(2) Signed-off-by:
Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by:
Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by:
Josh Triplett <josh@joshtriplett.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Nicholas Miell <nmiell@comcast.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alan Cox <gnomes@lxorguk.ukuu.org.uk> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: David Howells <dhowells@redhat.com> Cc: Pranith Kumar <bobby.prani@gmail.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Shuah Khan <shuahkh@osg.samsung.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- Sep 10, 2015
-
-
Dave Young authored
There are two kexec load syscalls, kexec_load another and kexec_file_load. kexec_file_load has been splited as kernel/kexec_file.c. In this patch I split kexec_load syscall code to kernel/kexec.c. And add a new kconfig option KEXEC_CORE, so we can disable kexec_load and use kexec_file_load only, or vice verse. The original requirement is from Ted Ts'o, he want kexec kernel signature being checked with CONFIG_KEXEC_VERIFY_SIG enabled. But kexec-tools use kexec_load syscall can bypass the checking. Vivek Goyal proposed to create a common kconfig option so user can compile in only one syscall for loading kexec kernel. KEXEC/KEXEC_FILE selects KEXEC_CORE so that old config files still work. Because there's general code need CONFIG_KEXEC_CORE, so I updated all the architecture Kconfig with a new option KEXEC_CORE, and let KEXEC selects KEXEC_CORE in arch Kconfig. Also updated general kernel code with to kexec_load syscall. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by:
Dave Young <dyoung@redhat.com> Cc: Eric W. Biederman <ebiederm@xmission.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Petr Tesarik <ptesarik@suse.cz> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Josh Boyer <jwboyer@fedoraproject.org> Cc: David Howells <dhowells@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Frederic Weisbecker authored
We need to launch the usermodehelper kernel threads with the widest affinity and this is partly why we use khelper. This workqueue has unbound properties and thus a wide affinity inherited by all its children. Now khelper also has special properties that we aren't much interested in: ordered and singlethread. There is really no need about ordering as all we do is creating kernel threads. This can be done concurrently. And singlethread is a useless limitation as well. The workqueue engine already proposes generic unbound workqueues that don't share these useless properties and handle well parallel jobs. The only worrysome specific is their affinity to the node of the current CPU. It's fine for creating the usermodehelper kernel threads but those inherit this affinity for longer jobs such as requesting modules. This patch proposes to use these node affine unbound workqueues assuming that a node is sufficient to handle several parallel usermodehelper re...
-
- Sep 04, 2015
-
-
Mel Gorman authored
An IPI is sent to flush remote TLBs when a page is unmapped that was potentially accesssed by other CPUs. There are many circumstances where this happens but the obvious one is kswapd reclaiming pages belonging to a running process as kswapd and the task are likely running on separate CPUs. On small machines, this is not a significant problem but as machine gets larger with more cores and more memory, the cost of these IPIs can be high. This patch uses a simple structure that tracks CPUs that potentially have TLB entries for pages being unmapped. When the unmapping is complete, the full TLB is flushed on the assumption that a refill cost is lower than flushing individual entries. Architectures wishing to do this must give the following guarantee. If a clean page is unmapped and not immediately flushed, the architecture must guarantee that a write to that linear address from a CPU with a cached TLB entry will trap a page fault. This is essentially what the kernel already depends on but the window is much larger with this patch applied and is worth highlighting. The architecture should consider whether the cost of the full TLB flush is higher than sending an IPI to flush each individual entry. An additional architecture helper called flush_tlb_local is required. It's a trivial wrapper with some accounting in the x86 case. The impact of this patch depends on the workload as measuring any benefit requires both mapped pages co-located on the LRU and memory pressure. The case with the biggest impact is multiple processes reading mapped pages taken from the vm-scalability test suite. The test case uses NR_CPU readers of mapped files that consume 10*RAM. Linear mapped reader on a 4-node machine with 64G RAM and 48 CPUs 4.2.0-rc1 4.2.0-rc1 vanilla flushfull-v7 Ops lru-file-mmap-read-elapsed 159.62 ( 0.00%) 120.68 ( 24.40%) Ops lru-file-mmap-read-time_range 30.59 ( 0.00%) 2.80 ( 90.85%) Ops lru-file-mmap-read-time_stddv 6.70 ( 0.00%) 0.64 ( 90.38%) 4.2.0-rc1 4.2.0-rc1 vanilla flushfull-v7 User 581.00 611.43 System 5804.93 4111.76 Elapsed 161.03 122.12 This is showing that the readers completed 24.40% faster with 29% less system CPU time. From vmstats, it is known that the vanilla kernel was interrupted roughly 900K times per second during the steady phase of the test and the patched kernel was interrupts 180K times per second. The impact is lower on a single socket machine. 4.2.0-rc1 4.2.0-rc1 vanilla flushfull-v7 Ops lru-file-mmap-read-elapsed 25.33 ( 0.00%) 20.38 ( 19.54%) Ops lru-file-mmap-read-time_range 0.91 ( 0.00%) 1.44 (-58.24%) Ops lru-file-mmap-read-time_stddv 0.28 ( 0.00%) 0.47 (-65.34%) 4.2.0-rc1 4.2.0-rc1 vanilla flushfull-v7 User 58.09 57.64 System 111.82 76.56 Elapsed 27.29 22.55 It's still a noticeable improvement with vmstat showing interrupts went from roughly 500K per second to 45K per second. The patch will have no impact on workloads with no memory pressure or have relatively few mapped pages. It will have an unpredictable impact on the workload running on the CPU being flushed as it'll depend on how many TLB entries need to be refilled and how long that takes. Worst case, the TLB will be completely cleared of active entries when the target PFNs were not resident at all. [sasha.levin@oracle.com: trace tlb flush after disabling preemption in try_to_unmap_flush] Signed-off-by:
Mel Gorman <mgorman@suse.de> Reviewed-by:
Rik van Riel <riel@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Acked-by:
Ingo Molnar <mingo@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by:
Sasha Levin <sasha.levin@oracle.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
Andrea Arcangeli authored
This allows to select the userfaultfd during configuration to build it. Signed-off-by:
Andrea Arcangeli <aarcange@redhat.com> Acked-by:
Pavel Emelyanov <xemul@parallels.com> Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com> Cc: zhang.zhanghailiang@huawei.com Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Feiner <pfeiner@google.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org>
-
- Aug 15, 2015
-
-
Oleg Nesterov authored
Remove CONFIG_PERCPU_RWSEM, the next patch adds the unconditional user of percpu_rw_semaphore. Signed-off-by:
Oleg Nesterov <oleg@redhat.com>
-
- Aug 14, 2015
-
-
David Howells authored
Move certificate handling out of the kernel/ directory and into a certs/ directory to get all the weird stuff in one place and move the generated signing keys into this directory. Signed-off-by:
David Howells <dhowells@redhat.com> Reviewed-by:
David Woodhouse <David.Woodhouse@intel.com>
-
- Aug 12, 2015
-
-
David Howells authored
The revised sign-file program is no longer a script that wraps the openssl program, but now rather a program that makes use of OpenSSL's crypto library. This means that to build the sign-file program, the kernel build process now has a dependency on the OpenSSL development packages in addition to OpenSSL itself. Document this in Kconfig and in module-signing.txt. Signed-off-by:
David Howells <dhowells@redhat.com> Reviewed-by:
David Woodhouse <David.Woodhouse@intel.com>
-
- Aug 07, 2015
-
-
David Woodhouse authored
Let the user explicitly provide a file containing trusted keys, instead of just automatically finding files matching *.x509 in the build tree and trusting whatever we find. This really ought to be an *explicit* configuration, and the build rules for dealing with the files were fairly painful too. Fix applied from James Morris that removes an '=' from a macro definition in kernel/Makefile as this is a feature that only exists from GNU make 3.82 onwards. Signed-off-by:
David Woodhouse <David.Woodhouse@intel.com> Signed-off-by:
David Howells <dhowells@redhat.com>
-