Newer
Older
if (!list_empty(&ctx->rq_lists[type])) {
dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
list_del_init(&dispatch_data->rq->queuelist);
sbitmap_clear_bit(sb, bitnr);
}
spin_unlock(&ctx->lock);
return !dispatch_data->rq;
}
struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
struct blk_mq_ctx *start)
{
unsigned off = start ? start->index_hw[hctx->type] : 0;
struct dispatch_rq_data data = {
.hctx = hctx,
.rq = NULL,
};
__sbitmap_for_each_set(&hctx->ctx_map, off,
dispatch_rq_from_ctx, &data);
return data.rq;
}
static inline unsigned int queued_to_index(unsigned int queued)
{
if (!queued)
return 0;
return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
bool blk_mq_get_driver_tag(struct request *rq)
{
struct blk_mq_alloc_data data = {
.q = rq->q,
.cmd_flags = rq->cmd_flags,
if (rq->tag != -1)
goto done;
Sagi Grimberg
committed
if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
data.flags |= BLK_MQ_REQ_RESERVED;
shared = blk_mq_tag_busy(data.hctx);
rq->tag = blk_mq_get_tag(&data);
if (rq->tag >= 0) {
rq->rq_flags |= RQF_MQ_INFLIGHT;
atomic_inc(&data.hctx->nr_active);
}
data.hctx->tags->rqs[rq->tag] = rq;
}
done:
return rq->tag != -1;
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
int flags, void *key)
{
struct blk_mq_hw_ctx *hctx;
hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
spin_lock(&hctx->dispatch_wait_lock);
list_del_init(&wait->entry);
spin_unlock(&hctx->dispatch_wait_lock);
blk_mq_run_hw_queue(hctx, true);
return 1;
}
/*
* Mark us waiting for a tag. For shared tags, this involves hooking us into
* the tag wakeups. For non-shared tags, we can simply mark us needing a
* restart. For both cases, take care to check the condition again after
* marking us as waiting.
*/
static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
struct wait_queue_head *wq;
wait_queue_entry_t *wait;
bool ret;
if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
blk_mq_sched_mark_restart_hctx(hctx);
/*
* It's possible that a tag was freed in the window between the
* allocation failure and adding the hardware queue to the wait
* queue.
*
* Don't clear RESTART here, someone else could have set it.
* At most this will cost an extra queue run.
*/
wait = &hctx->dispatch_wait;
if (!list_empty_careful(&wait->entry))
return false;
wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
spin_lock_irq(&wq->lock);
spin_lock(&hctx->dispatch_wait_lock);
if (!list_empty(&wait->entry)) {
spin_unlock(&hctx->dispatch_wait_lock);
spin_unlock_irq(&wq->lock);
return false;
wait->flags &= ~WQ_FLAG_EXCLUSIVE;
__add_wait_queue(wq, wait);
* It's possible that a tag was freed in the window between the
* allocation failure and adding the hardware queue to the wait
* queue.
if (!ret) {
spin_unlock(&hctx->dispatch_wait_lock);
spin_unlock_irq(&wq->lock);
return false;
/*
* We got a tag, remove ourselves from the wait queue to ensure
* someone else gets the wakeup.
*/
list_del_init(&wait->entry);
spin_unlock(&hctx->dispatch_wait_lock);
spin_unlock_irq(&wq->lock);
return true;
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
/*
* Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
* - EWMA is one simple way to compute running average value
* - weight(7/8 and 1/8) is applied so that it can decrease exponentially
* - take 4 as factor for avoiding to get too small(0) result, and this
* factor doesn't matter because EWMA decreases exponentially
*/
static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
{
unsigned int ewma;
if (hctx->queue->elevator)
return;
ewma = hctx->dispatch_busy;
if (!ewma && !busy)
return;
ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
if (busy)
ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
hctx->dispatch_busy = ewma;
}
#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
/*
* Returns true if we did some work AND can potentially do more.
*/
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
struct blk_mq_hw_ctx *hctx;
struct request *rq, *nxt;
int errors, queued;
if (list_empty(list))
return false;
WARN_ON(!list_is_singular(list) && got_budget);
/*
* Now process all the entries, sending them to the driver.
*/
struct blk_mq_queue_data bd;
rq = list_first_entry(list, struct request, queuelist);
if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
break;
* The initial allocation attempt failed, so we need to
* rerun the hardware queue when a tag is freed. The
* waitqueue takes care of that. If the queue is run
* before we add this entry back on the dispatch list,
* we'll re-run it below.
if (!blk_mq_mark_tag_wait(hctx, rq)) {
blk_mq_put_dispatch_budget(hctx);
/*
* For non-shared tags, the RESTART check
* will suffice.
*/
if (hctx->flags & BLK_MQ_F_TAG_SHARED)
no_tag = true;
break;
}
}
list_del_init(&rq->queuelist);
/*
* Flag last if we have no more requests, or if we have more
* but can't assign a driver tag to it.
*/
if (list_empty(list))
bd.last = true;
else {
nxt = list_first_entry(list, struct request, queuelist);
bd.last = !blk_mq_get_driver_tag(nxt);
ret = q->mq_ops->queue_rq(hctx, &bd);
if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
/*
* If an I/O scheduler has been configured and we got a
* driver tag for the next request already, free it
* again.
*/
if (!list_empty(list)) {
nxt = list_first_entry(list, struct request, queuelist);
blk_mq_put_driver_tag(nxt);
}
list_add(&rq->queuelist, list);
}
if (unlikely(ret != BLK_STS_OK)) {
blk_mq_end_request(rq, BLK_STS_IOERR);
} while (!list_empty(list));
hctx->dispatched[queued_to_index(queued)]++;
/*
* Any items that need requeuing? Stuff them into hctx->dispatch,
* that is where we will continue on next queue run.
*/
if (!list_empty(list)) {
/*
* If we didn't flush the entire list, we could have told
* the driver there was more coming, but that turned out to
* be a lie.
*/
if (q->mq_ops->commit_rqs)
q->mq_ops->commit_rqs(hctx);
spin_lock(&hctx->lock);
list_splice_init(list, &hctx->dispatch);
spin_unlock(&hctx->lock);
* If SCHED_RESTART was set by the caller of this function and
* it is no longer set that means that it was cleared by another
* thread and hence that a queue rerun is needed.
* If 'no_tag' is set, that means that we failed getting
* a driver tag with an I/O scheduler attached. If our dispatch
* waitqueue is no longer active, ensure that we run the queue
* AFTER adding our entries back to the list.
* If no I/O scheduler has been configured it is possible that
* the hardware queue got stopped and restarted before requests
* were pushed back onto the dispatch list. Rerun the queue to
* avoid starvation. Notes:
* - blk_mq_run_hw_queue() checks whether or not a queue has
* been stopped before rerunning a queue.
* - Some but not all block drivers stop a queue before
* returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
*
* If driver returns BLK_STS_RESOURCE and SCHED_RESTART
* bit is set, run queue after a delay to avoid IO stalls
* that could otherwise occur if the queue is idle.
needs_restart = blk_mq_sched_needs_restart(hctx);
if (!needs_restart ||
(no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
blk_mq_run_hw_queue(hctx, true);
else if (needs_restart && (ret == BLK_STS_RESOURCE))
blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
blk_mq_update_dispatch_busy(hctx, true);
} else
blk_mq_update_dispatch_busy(hctx, false);
/*
* If the host/device is unable to accept more work, inform the
* caller of that.
*/
if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
return false;
return (queued + errors) != 0;
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
int srcu_idx;
/*
* We should be running this queue from one of the CPUs that
* are mapped to it.
*
* There are at least two related races now between setting
* hctx->next_cpu from blk_mq_hctx_next_cpu() and running
* __blk_mq_run_hw_queue():
*
* - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
* but later it becomes online, then this warning is harmless
* at all
*
* - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
* but later it becomes offline, then the warning can't be
* triggered, and we depend on blk-mq timeout handler to
* handle dispatched requests to this hctx
if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
cpu_online(hctx->next_cpu)) {
printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
raw_smp_processor_id(),
cpumask_empty(hctx->cpumask) ? "inactive": "active");
dump_stack();
}
/*
* We can't run the queue inline with ints disabled. Ensure that
* we catch bad users of this early.
*/
WARN_ON_ONCE(in_interrupt());
might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
hctx_lock(hctx, &srcu_idx);
blk_mq_sched_dispatch_requests(hctx);
hctx_unlock(hctx, srcu_idx);
static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
{
int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
if (cpu >= nr_cpu_ids)
cpu = cpumask_first(hctx->cpumask);
return cpu;
}
/*
* It'd be great if the workqueue API had a way to pass
* in a mask and had some smarts for more clever placement.
* For now we just round-robin here, switching for every
* BLK_MQ_CPU_WORK_BATCH queued items.
*/
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
int next_cpu = hctx->next_cpu;
if (hctx->queue->nr_hw_queues == 1)
return WORK_CPU_UNBOUND;
if (--hctx->next_cpu_batch <= 0) {
next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
cpu_online_mask);
if (next_cpu >= nr_cpu_ids)
next_cpu = blk_mq_first_mapped_cpu(hctx);
hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
}
/*
* Do unbound schedule if we can't find a online CPU for this hctx,
* and it should only happen in the path of handling CPU DEAD.
*/
if (!cpu_online(next_cpu)) {
if (!tried) {
tried = true;
goto select_cpu;
}
/*
* Make sure to re-select CPU next time once after CPUs
* in hctx->cpumask become online again.
*/
hctx->next_cpu = next_cpu;
hctx->next_cpu_batch = 1;
return WORK_CPU_UNBOUND;
}
hctx->next_cpu = next_cpu;
return next_cpu;
}
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
unsigned long msecs)
if (unlikely(blk_mq_hctx_stopped(hctx)))
if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
int cpu = get_cpu();
if (cpumask_test_cpu(cpu, hctx->cpumask)) {
Paolo Bonzini
committed
__blk_mq_run_hw_queue(hctx);
put_cpu();
Paolo Bonzini
committed
return;
}
put_cpu();
Paolo Bonzini
committed
Bart Van Assche
committed
kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
msecs_to_jiffies(msecs));
}
void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
int srcu_idx;
bool need_run;
/*
* When queue is quiesced, we may be switching io scheduler, or
* updating nr_hw_queues, or other things, and we can't run queue
* any more, even __blk_mq_hctx_has_pending() can't be called safely.
*
* And queue will be rerun in blk_mq_unquiesce_queue() if it is
* quiesced.
*/
hctx_lock(hctx, &srcu_idx);
need_run = !blk_queue_quiesced(hctx->queue) &&
blk_mq_hctx_has_pending(hctx);
hctx_unlock(hctx, srcu_idx);
if (need_run) {
__blk_mq_delay_run_hw_queue(hctx, async, 0);
return true;
}
return false;
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i) {
if (blk_mq_hctx_stopped(hctx))
EXPORT_SYMBOL(blk_mq_run_hw_queues);
/**
* blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
* @q: request queue.
*
* The caller is responsible for serializing this function against
* blk_mq_{start,stop}_hw_queue().
*/
bool blk_mq_queue_stopped(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i)
if (blk_mq_hctx_stopped(hctx))
return true;
return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);
/*
* This function is often used for pausing .queue_rq() by driver when
* there isn't enough resource or some conditions aren't satisfied, and
* BLK_STS_RESOURCE is usually returned.
*
* We do not guarantee that dispatch can be drained or blocked
* after blk_mq_stop_hw_queue() returns. Please use
* blk_mq_quiesce_queue() for that requirement.
*/
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
cancel_delayed_work(&hctx->run_work);
set_bit(BLK_MQ_S_STOPPED, &hctx->state);
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
/*
* This function is often used for pausing .queue_rq() by driver when
* there isn't enough resource or some conditions aren't satisfied, and
* BLK_STS_RESOURCE is usually returned.
*
* We do not guarantee that dispatch can be drained or blocked
* after blk_mq_stop_hw_queues() returns. Please use
* blk_mq_quiesce_queue() for that requirement.
*/
void blk_mq_stop_hw_queues(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i)
blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
blk_mq_run_hw_queue(hctx, false);
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);
void blk_mq_start_hw_queues(struct request_queue *q)
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i)
blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
if (!blk_mq_hctx_stopped(hctx))
return;
clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
{
struct blk_mq_hw_ctx *hctx;
int i;
queue_for_each_hw_ctx(q, hctx, i)
blk_mq_start_stopped_hw_queue(hctx, async);
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
static void blk_mq_run_work_fn(struct work_struct *work)
{
struct blk_mq_hw_ctx *hctx;
hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
* If we are stopped, don't run the queue.
if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
__blk_mq_run_hw_queue(hctx);
}
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
struct request *rq,
bool at_head)
lockdep_assert_held(&ctx->lock);
trace_block_rq_insert(hctx->queue, rq);
if (at_head)
list_add(&rq->queuelist, &ctx->rq_lists[type]);
list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
bool at_head)
{
struct blk_mq_ctx *ctx = rq->mq_ctx;
lockdep_assert_held(&ctx->lock);
__blk_mq_insert_req_list(hctx, rq, at_head);
blk_mq_hctx_mark_pending(hctx, ctx);
}
/*
* Should only be used carefully, when the caller knows we want to
* bypass a potential IO scheduler on the target device.
*/
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
spin_lock(&hctx->lock);
list_add_tail(&rq->queuelist, &hctx->dispatch);
spin_unlock(&hctx->lock);
if (run_queue)
blk_mq_run_hw_queue(hctx, false);
}
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
struct list_head *list)
/*
* preemption doesn't flush plug list, so it's possible ctx->cpu is
* offline now
*/
list_for_each_entry(rq, list, queuelist) {
trace_block_rq_insert(hctx->queue, rq);
spin_lock(&ctx->lock);
list_splice_tail_init(list, &ctx->rq_lists[type]);
blk_mq_hctx_mark_pending(hctx, ctx);
spin_unlock(&ctx->lock);
}
static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
{
struct request *rqa = container_of(a, struct request, queuelist);
struct request *rqb = container_of(b, struct request, queuelist);
if (rqa->mq_ctx < rqb->mq_ctx)
return -1;
else if (rqa->mq_ctx > rqb->mq_ctx)
return 1;
else if (rqa->mq_hctx < rqb->mq_hctx)
return -1;
else if (rqa->mq_hctx > rqb->mq_hctx)
return 1;
return blk_rq_pos(rqa) > blk_rq_pos(rqb);
}
void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
struct blk_mq_hw_ctx *this_hctx;
struct blk_mq_ctx *this_ctx;
struct request_queue *this_q;
struct request *rq;
LIST_HEAD(list);
unsigned int depth;
list_splice_init(&plug->mq_list, &list);
if (plug->rq_count > 2 && plug->multiple_queues)
list_sort(NULL, &list, plug_rq_cmp);
this_ctx = NULL;
depth = 0;
while (!list_empty(&list)) {
rq = list_entry_rq(list.next);
list_del_init(&rq->queuelist);
BUG_ON(!rq->q);
if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
if (this_hctx) {
trace_block_unplug(this_q, depth, !from_schedule);
blk_mq_sched_insert_requests(this_hctx, this_ctx,
&rq_list,
}
this_q = rq->q;
this_ctx = rq->mq_ctx;
this_hctx = rq->mq_hctx;
depth = 0;
}
depth++;
list_add_tail(&rq->queuelist, &rq_list);
* If 'this_hctx' is set, we know we have entries to complete
* on 'rq_list'. Do those.
trace_block_unplug(this_q, depth, !from_schedule);
blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
}
}
static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
blk_init_request_from_bio(rq, bio);
blk_account_io_start(rq, true);
static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
struct request *rq,
blk_qc_t *cookie, bool last)
{
struct request_queue *q = rq->q;
struct blk_mq_queue_data bd = {
.rq = rq,
blk_qc_t new_cookie;
blk_status_t ret;
new_cookie = request_to_qc_t(hctx, rq);
/*
* For OK queue, we are done. For error, caller may kill it.
* Any other error (busy), just add it to our list as we
* previously would have done.
*/
ret = q->mq_ops->queue_rq(hctx, &bd);
switch (ret) {
case BLK_STS_OK:
blk_mq_update_dispatch_busy(hctx, false);
*cookie = new_cookie;
break;
case BLK_STS_RESOURCE:
blk_mq_update_dispatch_busy(hctx, true);
__blk_mq_requeue_request(rq);
break;
default:
blk_mq_update_dispatch_busy(hctx, false);
*cookie = BLK_QC_T_NONE;
break;
}
return ret;
}
blk_status_t blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
struct request *rq,
blk_qc_t *cookie,
bool bypass, bool last)
{
struct request_queue *q = rq->q;
blk_status_t ret = BLK_STS_RESOURCE;
int srcu_idx;
bool force = false;
hctx_lock(hctx, &srcu_idx);
/*
* hctx_lock is needed before checking quiesced flag.
*
* When queue is stopped or quiesced, ignore 'bypass', insert
* and return BLK_STS_OK to caller, and avoid driver to try to
* dispatch again.
*/
if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) {
bypass = false;
goto out_unlock;
if (unlikely(q->elevator && !bypass))
goto out_unlock;
if (!blk_mq_get_dispatch_budget(hctx))
blk_mq_put_dispatch_budget(hctx);
/*
* Always add a request that has been through
*.queue_rq() to the hardware dispatch list.
*/
force = true;
ret = __blk_mq_issue_directly(hctx, rq, cookie, last);
out_unlock:
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
switch (ret) {
case BLK_STS_OK:
break;
case BLK_STS_DEV_RESOURCE:
case BLK_STS_RESOURCE:
if (force) {
blk_mq_request_bypass_insert(rq, run_queue);
/*
* We have to return BLK_STS_OK for the DM
* to avoid livelock. Otherwise, we return
* the real result to indicate whether the
* request is direct-issued successfully.
*/
ret = bypass ? BLK_STS_OK : ret;
} else if (!bypass) {
blk_mq_sched_insert_request(rq, false,
run_queue, false);
}
break;
default:
if (!bypass)
blk_mq_end_request(rq, ret);
break;
}
return ret;
void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
struct list_head *list)
{
blk_qc_t unused;
blk_status_t ret = BLK_STS_OK;
while (!list_empty(list)) {
struct request *rq = list_first_entry(list, struct request,
queuelist);
list_del_init(&rq->queuelist);
if (ret == BLK_STS_OK)
ret = blk_mq_try_issue_directly(hctx, rq, &unused,
false,
else
blk_mq_sched_insert_request(rq, false, true, false);
/*
* If we didn't flush the entire list, we could have told
* the driver there was more coming, but that turned out to
* be a lie.
*/
if (ret != BLK_STS_OK && hctx->queue->mq_ops->commit_rqs)
static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
{
list_add_tail(&rq->queuelist, &plug->mq_list);
plug->rq_count++;
if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
struct request *tmp;
tmp = list_first_entry(&plug->mq_list, struct request,
queuelist);
if (tmp->q != rq->q)
plug->multiple_queues = true;
}
}
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
const int is_sync = op_is_sync(bio->bi_opf);
const int is_flush_fua = op_is_flush(bio->bi_opf);
struct blk_mq_alloc_data data = { .flags = 0};
struct request *rq;
struct blk_plug *plug;
struct request *same_queue_rq = NULL;
blk_qc_t cookie;
blk_queue_bounce(q, &bio);
if (!bio_integrity_prep(bio))
return BLK_QC_T_NONE;
if (!is_flush_fua && !blk_queue_nomerges(q) &&
blk_attempt_plug_merge(q, bio, &same_queue_rq))
return BLK_QC_T_NONE;
if (blk_mq_sched_bio_merge(q, bio))
return BLK_QC_T_NONE;
rq_qos_throttle(q, bio);
rq = blk_mq_get_request(q, bio, &data);
if (bio->bi_opf & REQ_NOWAIT)
bio_wouldblock_error(bio);
return BLK_QC_T_NONE;
trace_block_getrq(q, bio, bio->bi_opf);
cookie = request_to_qc_t(data.hctx, rq);
plug = current->plug;
if (unlikely(is_flush_fua)) {
blk_mq_put_ctx(data.ctx);
blk_mq_bio_to_request(rq, bio);
/* bypass scheduler for flush rq */
blk_insert_flush(rq);
blk_mq_run_hw_queue(data.hctx, true);
} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
/*
* Use plugging if we have a ->commit_rqs() hook as well, as
* we know the driver uses bd->last in a smart fashion.
*/
unsigned int request_count = plug->rq_count;
struct request *last = NULL;
blk_mq_put_ctx(data.ctx);
blk_mq_bio_to_request(rq, bio);
else
last = list_entry_rq(plug->mq_list.prev);
if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
blk_flush_plug_list(plug, false);
trace_block_plug(q);
blk_add_rq_to_plug(plug, rq);
} else if (plug && !blk_queue_nomerges(q)) {
blk_mq_bio_to_request(rq, bio);
* We do limited plugging. If the bio can be merged, do that.
* Otherwise the existing request in the plug list will be
* issued. So the plug list will have one request at most
* The plug list might get flushed before this. If that happens,
* the plug list is empty, and same_queue_rq is invalid.
if (list_empty(&plug->mq_list))
same_queue_rq = NULL;
if (same_queue_rq) {
list_del_init(&same_queue_rq->queuelist);
plug->rq_count--;
}
blk_add_rq_to_plug(plug, rq);
blk_mq_put_ctx(data.ctx);
data.hctx = same_queue_rq->mq_hctx;